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Abstract—In this paper, an algorithm for mitigating impulsive
interference in OFDM based systems is presented. It improves
the conventional blanking nonlinearity approach for interference
mitigation, which typically distorts the entire received signal,
by combining the blanked and the original signal. The algo-
rithm uses a Neyman-Pearson like testing procedure to detect
interference at individual sub-carriers. Provided interference
is detected, the blanked and the original received signals are
then optimally combined such as to maximize the signal-to-
interference-and-noise ratio. The algorithm does not require
any prior knowledge about the impulsive interference and only
marginally increases computational complexity as compared to
the conventional blanking nonlinearity approach. Numerical
results demonstrate the superior performance of the proposed
scheme.

Index Terms—OFDM, impulsive interference, interference mit-
igation, blanking nonlinearity.

I. INTRODUCTION

ORTHOGONAL frequency-division multiplexing
(OFDM) is a multi-carrier modulation technique,

which has established itself in the recent years and is
currently deployed in numerous communications systems
such as digital audio broadcasting (DAB), digital video
broadcasting (DVB), or 3GPP long term evolution (LTE),
to mention just a few. These systems are often exposed
to impulsive interference that originates from switching
processes on the power distribution network, ignitions of
passing vehicles, or other systems operating in the same
frequency range [1].

For moderate impulsive interference power and infrequent
occurrence, OFDM systems can cope relatively well with
the interference, as it is spread among several sub-carriers
of an OFDM symbol. However, for frequent occurrence or
high interference power, such interference significantly affects
the performance of the system [2] and interference mitigation
techniques are required. A common approach to mitigate the
impact of impulsive interference is to apply a memoryless
blanking nonlinearity (BN) at the receiver input prior to the
conventional OFDM demodulator [3], [4]. Such nonlinearity
blanks all samples of the received signal with an amplitude
exceeding a predefined threshold. Although BN does cancel
the impulsive interference, it also affects the useful OFDM
signal, which is a significant drawback of this scheme [5];
also the whole received signal is typically discarded during the
blanking interval, despite only a fraction of the transmission
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bandwidth might be affected by the interference. Another
critical issue when applying the BN to an OFDM-based system
is the detection of interference impulses. It is well known that
OFDM signals have a relatively high peak-to-average power
ratio. This makes a differentiation of interference impulses
from OFDM signal peaks challenging.

In recent years, several sophisticated algorithms for the
mitigation of impulsive interference have been proposed [6]–
[9]. They rely on decision directed and/or iteratively obtained
estimates, which improve decoding at the cost of an increased
computational complexity. Furthermore, iterative schemes tend
to slow convergence and have difficulties converging at all if
poorly initialized.

Here, we propose an alternative, non-iterative scheme that
leads to a remarkable performance improvement also for poor
transmission conditions, yet only marginally increases the
computational complexity as compared to the BN approach.
Specifically, we propose a new algorithm that profits from
combining the original received signal with the blanked signal.
The approach is realized by first detecting the interference
at each sub-carrier using a new Neyman-Pearson-like testing
procedure, and then optimally combining both the blanked and
the original received signal such as to maximize the signal-to-
interference-and-noise ratio (SINR) provided the interference
has been detected. In this way the proposed algorithm com-
pensates losses due to falsely blanked OFDM signal samples
that are not corrupted by interference.

II. SYSTEM MODEL

Let us consider a digital baseband model of the trans-
mission system. A stream of information bits enters an
OFDM transmitter. The latter incorporates channel coding
of the source bits, mapping of the coded bits onto modu-
lated symbols, and insertion of pilot symbols. N modulated
symbols Xk, k = 0, 1, ..., N − 1, are arranged in a vector
X = [X0, X1, ..., XN−1]

T to form an OFDM symbol1. The
latter is then transformed into the time domain using an N -
point inverse fast Fourier transform (IFFT). Finally, the result-
ing IFFT samples are preceded by Ncp cyclic prefix samples,
forming the transmit vector s = [s0, s1, ..., sN+Ncp−1]

T . The
transmitted vector s is then used as input to a multi-path chan-
nel with an impulse response h = [h0, h1, ..., hN+Ncp−1]

T .
It is assumed that hl = 0 for l ≥ Ncp, where l denotes
the sample index in the time domain. We will assume that
the received signal is corrupted by additive white Gaussian
noise (AWGN) n = [n0, n1, ..., nN+Ncp−1]

T and impulsive

1Since the presented algorithm depends on information from the current
received OFDM symbol only, the OFDM symbol index is omitted.
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Fig. 1. Receiver model for OFDM transmission with blanking nonlinearity.

interference i = [i0, i1, ..., iN+Ncp−1]
T . Finally, the base-

band model of the received signal can be represented as
r = h�s+n+i, where “�” denotes a circular convolution and
r = [r0, r1, ..., rN+Ncp−1]

T is a vector of received samples. In
this model a perfect time and frequency synchronization at the
receiver is assumed. The signals s, n, and i can be assumed
as statistically independent; further, without loss of generality,
we will also assume that the power of the transmitted signal is
normalized to one, i.e. E

{|sl|2} = 2σ2
s = 1. For the average

power of the AWGN samples it holds that N0 = 2σ2
n, with

σ2
s and σ2

n being the component-wise variances of the trans-
mit signal and the noise signal, respectively. The impulsive
interference model will be described later on in the text.

The vector r is an input to the receiver, as shown in Fig. 1.
In order to remove high peaks of the impulsive interference a
BN is applied. The BN is described by a memoryless nonlinear
mapping f : C → C specified as

yl = f(rl) =

{
rl, if |rl| < TBN,

0, else,
(1)

for l = 0, 1, ..., N+Ncp−1 and TBN denoting the blanking
threshold. In Section IV we will address the selection of TBN

in more detail. Following the nonlinearity, the blanked signal
y = [y0, y1, ..., yN+Ncp−1]

T enters an OFDM demodulator.
The demodulator incorporates the removal of the cyclic prefix
and a fast Fourier transform (FFT), which results in the
frequency domain signal Y = [Y0, Y1, ..., YN−1]

T . The pilot
symbols extracted from Y are used to calculate estimates Ĥ
of the channel transfer function H = [H0, H1, ..., HN−1]

T ,
which is defined as the Fourier transform of the channel
impulse response.

Unfortunately, this simple approach also inevitably distorts
the received signal. In particular the BN leads to an attenuation
of the OFDM signal and introduces inter-carrier interference
(ICI), as investigated in [5]. In order to reduce the effects of
this distortion, we propose to linearly combine the blanked
signal Y and the original received signal R to form a new
signal Z that is used for demodulation and subsequent de-
coding for obtaining estimates of the transmitted information
bits. R is the output of the OFDM demodulator fed with the
received signal r. The combined signal Z is computed so as
to maximize the SINR for each sub-carrier.

III. PROPOSED ALGORITHM

In this section, we describe the algorithm for calculating
the optimally combined signal Z. It should be noted that
the algorithm does not rely on a known shape or model
of the interference signal, neither in time, nor in frequency
domain; also it does not exploit any previous decisions about

transmitted data. The algorithm incorporates three steps. In
the first step, interference is detected for each sub-carrier; in
the second step, the SINR is estimated; finally, in the third
step, both signals are combined optimally so as to maximize
the SINR.

A. Step I: Detection of the interference

The kth sub-carrier of a received OFDM symbol after the
OFDM demodulation can be described by

Rk = HkXk +Nk + Ik, (2)

with Nk and Ik, k=0, ..., N−1, being the Fourier transform
of the AWGN and the impulsive interference, respectively.
In the following we assume that Ik is Gaussian distributed
for an individual sub-carrier k. In [10] it is shown that this
approximation is valid, independently of the structure of the
noise, due to the spreading effect of the FFT. After the BN
the signal in the frequency domain is represented as [5]

Yk = KHkXk +Dk, (3)

where K is an attenuation factor given by K = (1− NB/N).
Here, NB denotes the number of blanked samples in the
respective OFDM symbol. The distortion term Dk in (3) can
be represented as the sum of attenuated AWGN N ′

k, and the
ICI IICI,k introduced by the BN

Dk = N ′
k + IICI,k. (4)

Since the impulsive interference occurs only occasionally and
with a power well above the OFDM signal power, we assume
that the impulsive interference is almost completely removed
by the BN and remaining impulsive interference below the
blanking threshold TBN is neglected in the following. Now
we define

ΔYk = KRk − Yk = KIk +D′
k, (5)

with D′
k = ΔNk − IICI,k and ΔNk = KNk −N ′

k. The
signal ΔYk is a useful indicator whether the kth sub-carrier
is affected by interference. Indeed, if Ik = 0, ΔYk equals
D′

k only; alternatively, ΔYk will include the combination
of both D′

k and impulsive interference Ik. Unfortunately,
the signal D′

k is not available at the receiver. However, we
can approximate its statistics. The variance of ΔNk can
be easily calculated when keeping in mind that Nk differs
from N ′

k only by the noise contributions from the blanked
samples; we obtain Var(ΔNk)= (1−K)KN0. The ICI term
IICI,k can be approximated by a Gaussian distribution for a
sufficiently high number of sub-carriers [5]. It has zero mean
and variance Var(IICI,k) = (1−K)KĤ2

avE
{|Xk|2

}
, where

Ĥav = 1
N

∑N−1
k=0 |Ĥk|. In [5], (6) was derived for AWGN

only. For arbitrary channel models, it is required to scale
E
{|Xk|2

}
by Ĥ2

av since on average the other sub-carriers
contribute equally to the ICI at the kth sub-carrier.2 Since
ΔNk and IICI,k are statistically independent, the variance of
D′

k can be approximated by

Var(D′
k) = (1 −K)K

(
Ĥ2

avE
{|Xk|2

}
+N0

)
. (6)

2This assumption is valid for uncorrelated blanking positions. Otherwise,
the contribution of the other sub-carriers might not be equal in the long run.
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Result (6) allows us to formally pose the impulsive interfer-
ence detection problem as a composite statistical hypothesis
test as follows.

Define the hypotheses H0 : Ik = 0, and H1 : Ik �= 0,
and consider the distribution of |ΔYk| under these hypotheses.
Under H0 the value of |ΔYk| follows a Rayleigh distribution
with the scale parameter Var(D′

k). Under H1 the situation
is different since ΔYk now follows a distribution of the
mixture of D′

k and Ik. Assuming that for a specific k the
interference Ik is Gaussian, we have the following. If Ik is
zero mean, then |ΔYk| can be approximated with a Rayleigh
distribution, yet with a larger scale parameter that accounts
for the variance of Ik. When Ik is not zero mean, then |ΔYk|
can be approximated with a Rician distribution. Thus, we
need to decide between H0, when |ΔYk| follows a Rayleigh
distribution, and a composite alternative H1, when |ΔYk|
follows a Rician distribution. Note that this is a one-sided test.
Moreover, the critical region of such test is independent of
the statistics of Ik but depends merely on the statistics of D′

k,
which are known; in other words, it depends on the distribution
of |ΔYk| under the hypothesis H0. Thus, in order to decide
between H0 and H1 in a Neyman-Pearson-like sense, we fix
the probability of the type-I error at some level pI . A type-I
error is defined as the probability of selecting H1 when H0

is true. Then, the optimal hypothesis Ĥ is selected as

Ĥ =

{
H0 : |ΔYk| < TICI,k,

H1 : |ΔYk| ≥ TICI,k,
(7)

where the decision threshold TICI,k is found as
TICI,k =

√
Var(D′

k) log(1/pI). The latter expression follows
directly from the properties of the Rayleigh distribution.

Obviously, if H0 is selected, then Zk = Rk as there is no
impulsive interference. If, however, H1 is selected, then Rk

and Yk have to be optimally combined based on their sub-
carrier SINR for obtaining Zk.

B. Step II: Calculation of the SINR

Under the assumption that Ik and IICI,k are mutually
uncorrelated, the interference power at the kth sub-carrier can
be computed from (5) as

|Ik|2 =

{ |ΔYk|2−Var(D′
k)

K2 , if |ΔYk| ≥ TICI,k,

0, else.
(8)

This allows us to calculate the sub-carrier SINR for the
received signal Rk from (2) and (8), and the sub-carrier SINR
for the blanked signal Yk from (3), (4), and the variance of
the ICI

SINRRk
=

|Ĥk|2
N0 + |Ik|2 , (9)

SINRYk
=

K2|Ĥk|2
K2N0 + (1−K)K(Ĥ2

av +N0)
. (10)

C. Step III: Combination of both signals

Having computed (9) and (10) we consider an optimal
combination of Rk and Yk that maximizes the SINR. For that
we construct a combined signal Zk as

Zk = wkRk + (1− wk)Yk, (11)

where wk ∈ [0, 1] is a weighting factor. It is now straight-
forward to obtain the SINR of the combined signal Zk as a
function of the weighting factor wk

SINRZk
=

|Ĥk|2 (wk + (1− wk)K)
2

w2
k|Ik|2 + (wk + (1− wk)K)

2
N0

· · ·
1

+(1− wk)2(1−K)K
(
Ĥ2

av +N0

) . (12)

After some tedious but rather straightforward algebra the
extremum of (12) with respect to wk is found at

wk =

{
(1−K)(Ĥ2

av+N0)

(1−K)(Ĥ2
av+N0)+|Ik|2 , H1 is selected,

1, H0 is selected.
(13)

Obviously, when no blanking is applied (K = 1) or no
interference is detected (Ik = 0) for a specific k, the signal
Yk is discarded as it contains no additional information. In
all other cases, both the original signal Rk and the blanked
signal Yk are linearly combined with the combination weights
chosen such as to maximize the SINR; it is this feature of the
proposed algorithm that leads to the improved performance.

The computational complexity overhead for our proposed
scheme is only minimal. In the combination unit, the number
of operations scales linearly with the number of sub-carriers,
i.e., O(N). The introduced second FFT has a complexity of
O(N log(N)); moreover, it can be computed in parallel to the
FFT of Yk.

IV. SIMULATION RESULTS

In order to evaluate the performance of the proposed algo-
rithm, the transmission scenario is adopted from [6]. In this
context LDACS1 [11] as exemplarily chosen OFDM system
is exposed to impulsive interference from the DME system3.
LDACS1 operates at 994.5MHz. The LDACS1 channel oc-
cupies 625 kHz bandwidth, resulting in a sub-carrier spacing
of ≈ 9.8 kHz, with 64 sub-carriers. For channel coding, a
concatenated scheme of a Reed-Solomon code with rate 0.9
and a convolutional code with rate 1/2 is used. The coded
bits are QPSK modulated. This OFDM signal is interfered
by Gaussian shaped pulse pairs with short duration but high
power, generated by DME stations. These stations are trans-
mitting at a Δfc = ±0.5MHz frequency offset compared
to the LDACS1 carrier frequency, however with a spectrum
partially overlapping with the LDACS1 bandwidth. This leads
to a frequency-selective impulsive interference, which mainly
affects the edges of the LDACS1 bandwidth. The interference
scenario from [6] comprises four DME stations, which are
characterized in Table I. The signal-to-interference ratio (SIR)
is defined as the ratio of the average OFDM signal power
and the peak power of DME pulses. The signal-to-noise
ratio (SNR) is defined as 1/N0. Unlike the simulations, in
real systems an increasing SNR corresponds to an increasing
OFDM signal power but does not reduce the AWGN power.
This is taken into account when calculating the SIR by adding
the SNR.

3More detailed information about the two considered system can be found
in [6], [11].
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TABLE I
PARAMETERS OF INTERFERENCE SCENARIO.

Station Δfc [MHz] SIR [dB] Pulse pair rate [1/s]
DME1 -0.5 -18.7 + SNR [dB] 3600
DME2 -0.5 -17.2 + SNR [dB] 3600
DME3 -0.5 -2.9 + SNR [dB] 3600
DME4 +0.5 -23.3 + SNR [dB] 3600

For statistical impulsive noise models, the optimal blanking
threshold is derived in [12]. However, this approach cannot be
easily extended to more evolved interference scenarios, like
multiple DME interference. Hence we derive the threshold
based on simulations, as shown in [13]. When applying the
BN, TBN = 3.5 leads to the best results. Yet the proposed
algorithm leads to a lower optimal threshold at TBN = 2.5.
This results from the fact that falsely blanked OFDM signal
peaks have a less profound effect as now the testing procedure
is employed to determine the presence of interference. If
the test shows that no interference occurred only the non-
blanked signal is used for further processing. The type-I error
probability was set to pI = 0.001, which led to the best
performance.4

We use a realistic aeronautical en-route channel model
adopted from [6]. It takes into account a two-path channel
model with a strong line-of-sight path and Doppler frequencies
of up to 1.25 kHz. The estimation of the channel transfer
function is realized using Wiener filtering based on the pilot
information.

Simulations were carried out for the BN case only, the
proposed scheme, and the blanking compensation (BC) algo-
rithm proposed in [6]. The latter algorithm removes blanking-
induced ICI in an iterative way. The resulting bit error rate
(BER) is plotted in Fig. 2 as a function of the SNR. As
expected, the simple BN leads only to moderate improvement
due to interference detection failures and the induced ICI.
Iterative removal of ICI by the BC does improve the BER.
However, the proposed scheme outperforms the BC by ≈ 1 dB
while preserving a low complexity. Compared to the simple
BN the proposed scheme achieves gains higher than 3 dB.
The remaining gap between the performance of the proposed
scheme and the interference-free case is due to the reduction
of the OFDM signal power by the BN and inaccuracies in
estimating the SINR of Rk and Yk signals.

V. CONCLUSION

In this paper, we have addressed the mitigation of pulsed
interference in OFDM based systems. The proposed scheme is
an extension of the conventional blanking nonlinearity, which
uses a Neyman-Pearson-like testing procedure to (i) detect
the presence of the interference pulses, and then, provided
the interference has been detected, to (ii) optimally combine
the blanked signal with the original received signal such as
to maximize the sub-carrier signal-to-interference-and-noise
ratio. The algorithm can be potentially used with any type
of impulsive interference, yet we expect that it copes particu-
larly well with frequency-selective interference. The presented

4Note that the optimal selection of pI depends on the interference scenario.
However, values from pI = [0.01, 0.0001] led to similar results for several
tested scenarios.
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Fig. 2. Simulated BER performance for en-route transmission channel.

numerical simulations support this claim. Specifically, the pro-
posed algorithm has demonstrated a superior performance in
terms of the achieved bit error rate as compared to other state-
of-the-art interference mitigation techniques while preserving
a low complexity.
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